154 Folgen

  1. BI 154 Anne Collins: Learning with Working Memory

    Vom: 29.11.2022
  2. BI 153 Carolyn Dicey-Jennings: Attention and the Self

    Vom: 18.11.2022
  3. BI 152 Michael L. Anderson: After Phrenology: Neural Reuse

    Vom: 8.11.2022
  4. BI 151 Steve Byrnes: Brain-like AGI Safety

    Vom: 30.10.2022
  5. BI 150 Dan Nicholson: Machines, Organisms, Processes

    Vom: 15.10.2022
  6. BI 149 William B. Miller: Cell Intelligence

    Vom: 5.10.2022
  7. BI 148 Gaute Einevoll: Brain Simulations

    Vom: 25.9.2022
  8. BI 147 Noah Hutton: In Silico

    Vom: 13.9.2022
  9. BI 146 Lauren Ross: Causal and Non-Causal Explanation

    Vom: 7.9.2022
  10. BI 145 James Woodward: Causation with a Human Face

    Vom: 28.8.2022
  11. BI 144 Emily M. Bender and Ev Fedorenko: Large Language Models

    Vom: 17.8.2022
  12. BI 143 Rodolphe Sepulchre: Mixed Feedback Control

    Vom: 5.8.2022
  13. BI 142 Cameron Buckner: The New DoGMA

    Vom: 26.7.2022
  14. BI 141 Carina Curto: From Structure to Dynamics

    Vom: 12.7.2022
  15. BI 140 Jeff Schall: Decisions and Eye Movements

    Vom: 30.6.2022
  16. BI 139 Marc Howard: Compressed Time and Memory

    Vom: 20.6.2022
  17. BI 138 Matthew Larkum: The Dendrite Hypothesis

    Vom: 6.6.2022
  18. BI 137 Brian Butterworth: Can Fish Count?

    Vom: 27.5.2022
  19. BI 136 Michel Bitbol and Alex Gomez-Marin: Phenomenology

    Vom: 17.5.2022
  20. BI 135 Elena Galea: The Stars of the Brain

    Vom: 6.5.2022

4 / 8

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.

Visit the podcast's native language site