Brain Inspired
Ein Podcast von Paul Middlebrooks - Mittwochs
154 Folgen
-
BI 134 Mandyam Srinivasan: Bee Flight and Cognition
Vom: 27.4.2022 -
BI 133 Ken Paller: Lucid Dreaming, Memory, and Sleep
Vom: 15.4.2022 -
BI 132 Ila Fiete: A Grid Scaffold for Memory
Vom: 3.4.2022 -
BI 131 Sri Ramaswamy and Jie Mei: Neuromodulation-aware DNNs
Vom: 26.3.2022 -
BI 130 Eve Marder: Modulation of Networks
Vom: 13.3.2022 -
BI 129 Patryk Laurent: Learning from the Real World
Vom: 2.3.2022 -
BI 128 Hakwan Lau: In Consciousness We Trust
Vom: 20.2.2022 -
BI 127 Tomás Ryan: Memory, Instinct, and Forgetting
Vom: 10.2.2022 -
BI 126 Randy Gallistel: Where Is the Engram?
Vom: 31.1.2022 -
BI 125 Doris Tsao, Tony Zador, Blake Richards: NAISys
Vom: 19.1.2022 -
BI 124 Peter Robin Hiesinger: The Self-Assembling Brain
Vom: 5.1.2022 -
BI 123 Irina Rish: Continual Learning
Vom: 26.12.2021 -
BI 122 Kohitij Kar: Visual Intelligence
Vom: 12.12.2021 -
BI 121 Mac Shine: Systems Neurobiology
Vom: 2.12.2021 -
BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories
Vom: 21.11.2021 -
BI 119 Henry Yin: The Crisis in Neuroscience
Vom: 11.11.2021 -
BI 118 Johannes Jäger: Beyond Networks
Vom: 1.11.2021 -
BI 117 Anil Seth: Being You
Vom: 19.10.2021 -
BI 116 Michael W. Cole: Empirical Neural Networks
Vom: 12.10.2021 -
BI 115 Steve Grossberg: Conscious Mind, Resonant Brain
Vom: 2.10.2021
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.