Brain Inspired
Ein Podcast von Paul Middlebrooks - Mittwochs
167 Folgen
-
BI 187: COSYNE 2024 Neuro-AI Panel
Vom: 20.4.2024 -
BI 186 Mazviita Chirimuuta: The Brain Abstracted
Vom: 25.3.2024 -
BI 185 Eric Yttri: Orchestrating Behavior
Vom: 6.3.2024 -
BI 184 Peter Stratton: Synthesize Neural Principles
Vom: 20.2.2024 -
BI 183 Dan Goodman: Neural Reckoning
Vom: 6.2.2024 -
BI 182: John Krakauer Returns… Again
Vom: 19.1.2024 -
BI 181 Max Bennett: A Brief History of Intelligence
Vom: 25.12.2023 -
BI 180 Panel Discussion: Long-term Memory Encoding and Connectome Decoding
Vom: 11.12.2023 -
BI 179 Laura Gradowski: Include the Fringe with Pluralism
Vom: 27.11.2023 -
BI 178 Eric Shea-Brown: Neural Dynamics and Dimensions
Vom: 13.11.2023 -
BI 177 Special: Bernstein Workshop Panel
Vom: 30.10.2023 -
BI 176 David Poeppel Returns
Vom: 14.10.2023 -
BI 175 Kevin Mitchell: Free Agents
Vom: 3.10.2023 -
BI 174 Alicia Juarrero: Context Changes Everything
Vom: 13.9.2023 -
BI 173 Justin Wood: Origins of Visual Intelligence
Vom: 30.8.2023 -
BI 172 David Glanzman: Memory All The Way Down
Vom: 7.8.2023 -
BI 171 Mike Frank: Early Language and Cognition
Vom: 22.7.2023 -
BI 170 Ali Mohebi: Starting a Research Lab
Vom: 11.7.2023 -
BI 169 Andrea Martin: Neural Dynamics and Language
Vom: 28.6.2023 -
BI 168 Frauke Sandig and Eric Black w Alex Gomez-Marin: AWARE: Glimpses of Consciousness
Vom: 2.6.2023
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.
