EA - Optimizing seed:pollen ratio to spread ideas by Holly Elmore

The Nonlinear Library: EA Forum - Ein Podcast von The Nonlinear Fund

Podcast artwork

Kategorien:

Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Optimizing seed:pollen ratio to spread ideas, published by Holly Elmore on September 20, 2022 on The Effective Altruism Forum. Cross-posted from my blog. As an EA organizer when I was a grad student at Harvard, I developed an implicit model of community organizing at a university that is complimentary to the funnel model of Center for Effective Altruism (CEA) that was super popular a few years ago. I call mine “optimizing the seed:pollen ratio”. I’m not going to justify outreach as a strategy or advocate for any specific means of outreach—the point is to share my model of outreach efficacy. It’s a fun bonus that my model is well-explained by analogy to a biology concept, which I hope to explain well as a secondary objective. The funnel model CEA says, “We are trying to build a community, and one aspect of this project is encouraging people to become more deeply engaged with the community. The funnel metaphor helps us to think about the appropriate goals and audiences for our different projects.” The funnel model is focused on the deliberate composition of the community— how many people are entering the funnel, and what share of the community is at what part of the funnel at any given time. It also suggests that movement through the funnel happens in stages, from outer to middle to core, and there’s both investment from the community at every stage and friction to progressing from one stage to another. When this model was getting a lot of buzz, there were many discussions about what part of the funnel to be focusing on. This was happening during CEA’s big pivot toward endorsing longtermism as a fundamental tenet of EA. With that, many were arguing that there should much more focus on core EAs and the core-EA-development-pipeline, and much less emphasis on the mid- to casual level of community involvement, because most of the value of EA in the long run will be “in the tails” of the distribution, from original work, not from safer but lower value bets like getting average individuals to donate money. This view basically won and is dominant in EA today. Seed:pollen ratio (Source) Now for an interlude on plant reproductive strategies.1 This^ is called a “perfect flower” because it has both male and female reproductive organs. The female reproductive organ is the carpal, and it makes seeds. The male reproductive organs are the anthers and they contain pollen. Seeds are larger and contain cytoplasm, the organelles mitochondria and chloroplasts, and a reserve of nutrients. Pollen is much smaller per grain and, like sperm, basically only contains chromosomes. Whereas seeds can be as big as a coconut (which is a seed!), the biggest pollen grains are only 2.5mm long. In terms of energy and resources, seeds are much more costly and pollen is much cheaper. You may be familiar with human evolutionary psychology ideas about male vs. female reproductive strategies. What’s interesting about hermaphroditic plant species is that individuals are not committed to one strategy or the other, but can vary the amount of investment they put into seeds vs. pollen, either over evolutionary time or as a plastic response to environmental conditions. Per expected offspring, seeds are a safer bet. The average seed is FAR more likely to grow into a plant than the average pollen grain, which makes sense because pollen outnumbers seeds by a factor of 100-1000x (depending on the species— this number is for Cannabis sativa, because for some reason it’s very easy to get estimates of these quantities online for Cannabis :P) But you can make a LOT of pollen for the cost of one seed. Pollen can be carried by pollinators or the wind (or a number of other clever strategies) to sometimes vast distances (a genetically modified pollen grain fertilized a grass seed 21 kilometers away, using nothing but the wind ...

Visit the podcast's native language site