EA - 4 things GiveDirectly got right and wrong sending cash to flood survivors by GiveDirectly
The Nonlinear Library: EA Forum - Ein Podcast von The Nonlinear Fund

Kategorien:
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: 4 things GiveDirectly got right and wrong sending cash to flood survivors, published by GiveDirectly on July 31, 2023 on The Effective Altruism Forum.For Hassana in Kogi, Nigeria, October's floods were not like years past. "All our farmlands washed away as many had not yet harvested what they planted. The flooding continued until our homes and other things were destroyed. At this point we were running helter-skelter," she said.These floods, the worst in a decade, result from predictable seasonal rains. If we can anticipate floods, we can also anticipate the action needed to help. So why does aid often take months (even up to a year) to reach people like Hassana? Traditional humanitarian processes can be slow and cumbersome, government and aid agencies often lack the capacity and money to respond, and most aid is delivered in person, an added challenge when infrastructure is damaged.Digital cash transfers can avoid these issues, and getting them to work in a disaster setting means more people will survive climate change. In the past year, with support from Google.org, GiveDirectly ran pilots to send cash remotely to flood survivors: in Nigeria, we sent funds to survivors weeks after flooding and in Mozambique, we sent funds days before predicted floods. Below, we outline what worked, what didn't, and how you can help for next time.Over 1.5B people in low and middle income countries are threatened by extreme floods. Evidence shows giving them unconditional cash during a crisis lets them meet their immediate needs and rebuild their lives. However, operating in countries with limited infrastructure during severe weather events is complicated, so we ran two pilots to test and learn (see Appendix):What went right and what went wrongInnovating in the face of climate change requires a 'no regrets' strategy, accepting a degree of uncertainty in order to act early to prevent suffering. In that spirit, we're laying out what worked and did not:â Designing with community input meant our program worked betterA cash program only works if recipients can easily access the money. In Nigeria, we customized our program design based on dozens of community member interviews:Use the local dialect: There are 500+ dialects spoken in Nigeria, and our interviews determined a relatively uncommon one, Egbura Koto, was most widely used in the villages we were targeting. We hired field staff who spoke Egbura Koto, which made the program easier to access and more credible to community members, with one saying, "I didn't believe the program at first when my husband told me but when I got a call from GiveDirectly and someone spoke in my language, I started believing."Promote mobile money: Only 10% of Nigerians have a mobile money account (compared to 90% of Kenya), so we planned to text recipients instructions to create one and provide a hotline for assistance. But would they struggle to set up the new technology? Our interviews found most households had at least one technologically savvy member, and younger residents often helped their older or less literate neighbors read texts, so we proceeded with our design. In the end, 94% of surveyed recipients found the mobile money cash out process "easy."Send cash promptly: Cash is most useful where markets are functioning, so should we delay sending payments until floods recede if it means more shops will be reopened? In our interviews, residents explained the nearby Lokoja and Koton-Karfe markets functioned throughout flooding and could be reached in 10 minutes by boat. We decided not to design in a delay and found the nearby markets were, in fact, open during peak flooding.â We didn't send payments before severe floodsIn Mozambique, we attempted to pay people days ahead of severe floods based on data from Google Research's Flood Forecasting ...