Strukturoptimierung
Modellansatz - Ein Podcast von Gudrun Thäter, Sebastian Ritterbusch
Kategorien:
Peter Allinger und Nick Stockelkamp optimieren bei der Dassault Systèmes in Karlsruhe Formen, Strukturen und Strömungen im Bereich des Maschinenbaus. Anwendungsbeispiele reichen vom Zahnimplantat bis zum Schiffsdiesel und typische Optimierungskriterien sind Gewicht, Fertigungskosten und Haltbarkeit. Dabei hat sich der Fokus von einfachen Fragestellungen wie der Durchbiegung hin zu komplexen Fragestellungen wie der Geräuschentwicklung. In der Fluid-Optimierung geht es unter anderem um die Reduzierung von Druckverlusten, der Vermeidung von Turbulenzen oder auch Verbesserung von Wärmetauschern, beispielweise unterstützt durch den Löser OpenFOAM. Dabei gibt es unterschiedliche Vorhegensweisen: Man kann entweder die Veränderung der Objekte durch Hinzufügen oder Abziehen von Material hervorrufen, oder man berechnet die Sensitivität der Zielgröße bezüglich Veränderungen an den Oberflächen. Der mögliche Design-Raum wird in vielen Anwendungen mit der Finite-Elemente-Methode diskretisiert, um zu einem lösbaren Problem zu gelangen, wobei Strömungen oft mit Finite-Volument-Verfahren gelöst werden. Die zentrale Frage ist jedoch, wann man ein Bauteil als optimal bezeichnen kann. Hier hat Prof. Eckart Schnack in den 70er Jahren den Ansatz beschrieben, dass eine gleichmäßige Spannungsverteilung eines beanspruchten Bauteils ein optimales Bauteil auszeichnen kann. Im Fall von strukturmechanischen Belastungen gibt es für diesen Optimalitätsbegriff iterative Löser, jedoch sind Fragestellungen im Umfeld von Eigenwertprobleme noch ein offenes Forschungsgebiet.