Reguläre Strömungen

Modellansatz - Ein Podcast von Gudrun Thäter, Sebastian Ritterbusch

Kategorien:

Strömungen beobachten wir fast jeden Tag. Die Meeresbrandung fasziniert uns und eine gut funktionierende Klimaanlage ist ein wunderbarer Luxus, egal ob sie wärmt oder kühlt. Strömungen zu beherrschen ist aber auch in vielen verfahrenstechnischen Zusammenhängen wichtig. Insofern haben Gleichungen, die Strömungen beschreiben, eine große praktische Relevanz und gleichzeitig eine fast emotionale Anziehungskraft. Das einfachste mathematische Modell, das auch für viele Computersimulationen genutzt wird, sind die inkompressiblen Navier-Stokes Gleichungen (INS). Hier ist die strömende Substanz dem Wasser ähnlich genug, dass nur in der Materialkonstante Viskosität verschiedene Fließfähigkeiten unterschieden werden. Als Lösungen des Systems von partiellen Differentialgleichungen suchen wir das Geschwindigkeitsfeld und den Druck als Funktionen von Raum und Zeit . Im 3d-Fall ist das ein System von vier Gleichungen. Drei davon sind eine Vektorgleichung, die aus der Impulserhaltung abgeleitet wird und die vierte ist die Erhaltung der Masse. Im inkompressiblen Fall vereinfacht sich diese aus die Forderung, dass die Divergenz des Geschwindigkeitsfeldes verschwindet. Die komplexer aussehende Gleichung ist die Vektorgleichung, weil hier die zweiten räumlichen Ableitungen des Geschwindigkeitsfeldes, der Druckgradient, die zeitliche Ableitung der Geschwindigkeit und ein nichtlinearer Term vorkommen. Die Gleichungen müssen im Strömungsgebiet gelten. Die Lösungen müssen sich aus dem Anfangszustand entwickeln (Anfangsbedingung) und am räumlichen Rand vorgeschriebenen Werten, den Randwerten (meist fordert man, dass die Geschwindigkeit Null ist) genügen. Dieses Modell ist in einem längeren Prozess entwickelt worden. Ein großer Durchbruch bei der mathematischen Analyse gelang dem französischen Mathematiker Leray im Jahr 1934. Er hatte die geniale Idee, sich von dem Wunsch zu verabschieden, für diese komplizierte Gleichung eine punktweise zutreffende Lösung zu konstruieren. Statt dessen verallgemeinerte er den Lösungsbegriff und führte den Begriff der schwachen Lösung ein. Diese erfüllt die Gleichung nur im Sinne eines ausgeklügelten Systems von unendlich vielen Integralgleichungen. Er zeigte mit Hilfe von abstrakten Argumenten, dass die INS immer solche schwachen Lösungen haben. Heute ist bekannt, dass falls eine punktweise Lösung existiert (sogenannte starke Lösung), diese eindeutig ist (also insbesondere mit der schwachen übereinstimmt), es in 2d immer eine punktweise Lösung gibt, die für alle Zeiten existiert (unter geringfügigen Bedingungen an den Rand), und es unter Kleinheitsbedingungen an die Daten und bei glattem geometrischen Rand des Gebietes auch in 3d punktweise Lösungen gibt. Wir wissen jedoch in 3d nicht, ob die gefundenen schwache Lösung regulär bzw. stark ist (d.h. eine punktweise Lösung ist.) (...)