InSAR - SAR-Interferometrie
Modellansatz - Ein Podcast von Gudrun Thäter, Sebastian Ritterbusch
Kategorien:
Im Rahmen des ersten Alumnitreffens im neu renovierten Mathematikgebäude gibt uns unser Alumnus Markus Even einen Einblick in seine Arbeit als Mathematiker am Fraunhofer IOSB, dem Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung in Ettlingen in der Arbeitsgruppe zur Analyse und Visualisierung von SAR-Bilddaten. Er befasst sich mit der Entwicklung von Algorithmen für die Fernerkundung, genauer gesagt für die Deformationsanalyse mit Hilfe von SAR-Interferometrie (InSAR). Deformation bezieht sich hier auf Bewegungen der Erdkruste oder auf ihr befindlicher Strukturen, z.B. von Bauwerken. Hinter dem Stichwort SAR-Interferometrie verbirgt sich eine Vielfalt von Verfahren der Fernerkundung, die auf Synthetic Aperture Radar, auf Deutsch Radar mit synthetischer Apertur, beruhen, und die die Fähigkeit der Sensorik ein kohärentes Signal zu verarbeiten zur Erzeugung sogenannter Interferogramme nutzen. Für SAR ist es wesentlich, dass der Sensor bewegt wird. Zu diesem Zweck ist er auf einen Satelliten, ein Flugzeug oder auch auf einem auf Schienen laufenden Schlitten montiert. Für die Mehrzahl der Anwendungen wird er entlang einer näherungsweise geradlinigen Bahn bewegt und sendet in festen Zeitabständen elektromagnetische Signale im Mikrowellenbereich aus, deren Returns er, unterteilt in sehr kurze Zeitintervalle, aufzeichnet. Dabei "blickt" er schräg nach unten, um nicht systematisch von zwei verschiedenen Orten der Erdoberfläche rückkehrende Signale zu vermischen. Herauszuheben ist, dass er unabhängig von der Tageszeit- er beleuchtet die Szene selbst- und weitgehend unabhängig von den Wetterverhältnissen- die Atmosphäre verzögert das Signal, ist aber für diese Wellenlängen (ca. 3cm-85cm) bis auf seltene Ausnahmen durchlässig dafür- Aufnahmen machen kann. Dies ist ein Vorzug gegenüber Sensoren, die im optischen oder infraroten Teil des Spektrums arbeiten, und nachts oder bei Bewölkung nicht die gewünschten Informationen liefern können. Neben der Magnitude des rückgestreuten Signals zeichnet der SAR-Sensor auch dessen Phasenverschiebung gegenüber einem Referenzoszillator auf, die die Grundlage für die Interferometrie darstellt und viele Anwendungsmöglichkeiten bietet. Aus dem aufgezeichneten Signal wird das sogenannte fokusierte Bild berechnet. (Mathematisch gesehen handelt es sich bei dieser Aufgabe um ein inverses Problem.) Die Achsen dieses komplexwertigen Bildes entsprechen eine der Position des Satelliten auf seiner Bahn und die andere der Laufzeit des Signals. Der Zahlenwert eines Pixels kann vereinfacht als Mittel der aufgezeichneten Rückstreuung aus dem Volumen angesehen werden, dass durch das jeweilige Paar aus Bahninterval und Laufzeitinterval definiert ist. Dies ist der Kern von SAR: Die Radarkeule erfasst eine größere Fläche auf dem Boden, so dass das aufgezeichnete Signal aus der Überlagerung aller zurückkehrenden Wellen besteht. Diese Überlagerung wird durch die Fokusierung rückgängig gemacht. Dazu benutzt man, dass ein Auflösungselement am Boden zu allen Returns beiträgt, solange es von der Radarkeule erfasst wird und dabei eine bekannte Entfernungskurve durchläuft. Die Magnitude des sich so ergebenden Bildes erinnert bei hochaufgelösten Aufnahmen auf den ersten Blick an eine Schwarzweißphotographie. Betrachtet man sie jedoch genauer, so stellt man schnell Unterschiede fest. Erhabene Objekte kippen zum Sensor, da die höhergelegenen Punkte näher zu ihm liegen. Hohe Werte der Magnitude, also hohe Rückstreuung, sind in der Regel mit günstigen geometrischen Konstellationen verbunden: Eine ebene Fläche muss dazu beispielsweise senkrecht zum einfallenden Signal ausgerichtet sein, was selten der Fall ist. Geht man an die Grenze des aktuell Möglichen und betrachtet ein Bild einer städtischen Umgebung eines luftgetragenen Sensors mit wenigen Zentimetern Auflösung, so scheint es beinahe in punktförmige Streuer zu zerfallen. Diese werden durch dihedrale (Pfosten) und- häufiger- trihedrale Strukturen erzeugt. (...)