Interview with Alex Radovic, particle physicist turned machine learning researcher
Linear Digressions - Ein Podcast von Ben Jaffe and Katie Malone
Kategorien:
You’d be hard-pressed to find a field with bigger, richer, and more scientifically valuable data than particle physics. Years before “data scientist” was even a term, particle physicists were inventing technologies like the world wide web and cloud computing grids to help them distribute and analyze the datasets required to make particle physics discoveries. Somewhat counterintuitively, though, deep learning has only really debuted in particle physics in the last few years, although it’s making up for lost time with many exciting new advances. This episode of Linear Digressions is a little different from most, as we’ll be interviewing a guest, one of my (Katie’s) friends from particle physics, Alex Radovic. Alex and his colleagues have been at the forefront of machine learning in physics over the last few years, and his perspective on the strengths and shortcomings of those two fields together is a fascinating one.